
 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 1 of 7

Team Member
Names:

Kirthi Shankar Sivamani, Oliver Balicanta, Godfred Mantey, Spencer
Dorsch

Purdue Logins: gmantey, sdorsch, obalican, ksivaman

A. In your own words, summarize the feedback you received on project milestone M3 that could
lead to improvements in your work.

Of the two feedback comments we received, the main one is about our algorithm and how
four of our standard deviation values are a bit high. In general we should aim for the
standard deviations values to be less than 0.035, thus improving the accuracy of our
algorithm in calculating the parameter values. The other comment was on our plot for the
price vs. tau data having a large range on the y-axis, making it harder to read the data.

B. Based on your feedback, what do you need to do to improve your parameter identification

approaches? (Do not just reword your response to Part A. Do consider how you will
incorporate your feedback into your work.)

Firstly, we will use the axis command to set the limits for the x and y axes so that the axis
is shortened and the data can be more easily read. We will also brainstorm and come up
with a different approach for calculating tau because our current values of tau are yielding
standard deviation values way out of range. We will look at some of the ideas for tau we
wrote down for milestone 2 and we will also try to come up with newer ideas in our next
team meeting.

Part 1: Refinements Preview

Consult the M4 memo from FOS, Inc. for the details concerning your task. Respond to each of
the prompts below in the space provided. Your goal is to introduce two refinements to your
original algorithm, and these refinements must improve your solution to the FOS parameter
identification problem. Read the rest of this document carefully before you begin your work on
this milestone.

Definition of “refinement”

In this milestone, a refinement will fall into one of the following categories:
● Refinement Category 1: Parameter Identification: an improvement that changes the

way you are doing parameter identification, and that improves your parameter
identification results.

● Refinement Category 2: Algorithm Efficiency: an improvement that improves the
efficiency of your code by (for example) removing un-needed looping structures,
streamlining data handling, or otherwise reducing the execution time of your code.

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 2 of 7

● Refinement Category 3: Algorithm Insight: an improvement that involves analysis of
your code and its limitations. For example, if you use any kind of thresholding in your
code, you could determine the sensitivity of the solution to changes in that threshold
parameter, and report how those changes affect your parameter identification and/or
regression results.

In this milestone, you are REQUIRED to implement the parameter identification refinement
(Refinement Category 1). You must also implement one of the other refinements. You are
therefore required to implement two total refinements.

● Refinements are given below

● Adjustment based on final values

Briefly describe, in words (not code), the nature of the refinements you will implement in your
MATLAB code. Provide a brief, but thoughtful, description of your refinement, using evidence-
based rationales for why the refinement is necessary and should improve your solution.

Refinement 1. Category 1: Parameter(s) Targeted: time constant (tau), low temperature
(yl) for cooling, and high temperature (yh) for heating.
Description
The first two parameters we looked to improve for this Milestone was yl for cooling and yh for
heating. We calculate both of these in the same manner for M3, by taking the mean
temperature of the last 10 percent of temperature data. In our improvement for these
parameters, we changed the 10 percent mean to a 2 percent mean. This means that for our
Milestone 4 algorithm, we take the mean of the last 2 percent data for calculating yl in cooling
data and yh in heating data.

The next parameter we improved for the M4 algorithm is time constant (tau). For Milestone 3,
we calculated the temperature at tau using the formula mentioned on page 3 of the Milestone 1
project introduction pdf. We then calculated the difference of the temperature at each index of
temperature vector to that of temperature at tau. We took the index at which this difference
was minimum. Tau was then equal to temperature at this index minus start time. In our new
method for identification of time constant, the first step is the same in which we calculate
temperature at tau using the same formula from the M1 document mentioned above. We then
find the number of points in the data set which have a temperature greater than temperature at

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 3 of 7

tau (for heating) or less than temperature at tau (for cooling). We find this number using the
length and find functions. We then subtract this number from the number of data points to get
the index of time at which temperature has reached 63.2% of its final constant value. We then
subtract the start time from the time at this index to get time constant.
Rationale for Refinement
YL for cooling and YH for heating:
For the yh and yl parameters, we decided to plot all time history data sets on excel and visually
analyze the graph to find out where the erroneous values for yh and yl are . We noticed that for
FOS-4 and FOS-5, the temperature did not reach a steady state until the last 4-5% of data.
Thus, by taking a mean of the last 10% of data for the calculation of the respective parameters,
we were taking the mean of a non-constant temperature set, thus resulting in incorrect values
for yl for cooling and yh for heating. Therefore, we decided to take the mean only of the last
2% of the data set so that we take temperature values only after steady state has been attained.

Time constant (Tau)
Our method for calculating tau for Milestone 4 is better than that of Milestone 3 because our
Milestone 3 algorithm for tau was not robust enough to noise. For many data, the difference
we were looking to minimize was found in an outlying index value for which temperature was
extremely close to temperature at tau. However, our approach for finding tau for Milestone 4
is unaffected by such outliers. This improvement from M3 to M4 can be seen by the lower
SSE mod values for the Milestone 4 algorithm for all time history data sets (Refer to tables 1,
2 and 3 to see SSEmod values for heating data, cooling data and data for first order systems
respectively).

Refinement 2. Category: __Time Efficiency ___
Description
This improvement targets the run-time of the code. Our algorithm for Milestone 3 works with
multiple for loops having the index vector ranging from 1 to 10240 (number of temperature
values in one data set). This results in very slow processing of the processor and we often have
to wait for more than 30-45 seconds to obtain the plots and the output on the command
window. In improvement of our code, we get rid of 3 of the for loops from our code from
Milestone 3 and only have 2 for loops remaining. We have replaced two of the for loops with
while loops and 1 for loop has been vectorized.
Rationale for Refinement

When we use for loops to check any condition, the algorithm checks the entire data set
irrespective of whether the required value is found well before the end of the data is reached.
This happens because for loops are counter controlled processes. Most of the conditions we
required for the algorithm were event controlled. Thus when we changed the for loop to a
while loop, we could break the loop immediately after the required value is found. This
approach saved us a lot of execution time. Average value for time constant is approximately
1.5 for the heating and cooling data sets as can be seen from tables 1 and 2 in this document
below. In a for loop, we were checking values till t = 10 seconds instead of breaking at t = ts.
This means we were checking the vector for much more than required. The use of while loops
in M4 improved the execution time by 29.84 seconds (Refer to table 5 below).

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 4 of 7

Part 2: Refinements

Resave all M3 files as Project_M4Exec_sss_tt.m, Project_M4Algorithm_sss_tt.m, and
Project_M4Regression_sss_tt.m before starting to make refinements.

Refinement Category 1: Parameter Identification (Required)

Making all necessary refinements to your M3 algorithm in your
Project_M4Algorithm_sss_tt.m file. Refinements must be clearly commented in your code
with the text “Category 1” AND an adequate description. Then evaluate the improvement in your
refined parameter identification algorithm. Use the clean and noisy calibration data from M2 and
compare the parameters identified from the calibration data using the algorithm you submitted as
your solution for M3 and your refined algorithm for M4. Report your results in Tables 1 and 2.
Take care with units and decimal places when presenting results.

Table 1. Algorithm performance comparison to HEATING calibration parameters

 HEATING
Parameter M2Calibration M3Algorithm1 M4Algorithm2

Clean Noisy Clean Noisy Clean Noisy
𝑦௅ (℃) 0.00 -0.64 0.00 -0.76 0.00 -0.76
𝑦ு (℃) 100.00 99.36 100.00 98.59 100.00 98.75

𝑡௦ (𝑠𝑒𝑐) 1.50 1.50 1.50 1.52 1.50 1.52
𝜏 (𝑠𝑒𝑐) 0.31 1.65 0.31 1.58 0.31 1.60
SSEmod 0.0000013 0.67 0.00094 0.89 0.00020 0.84

Note: Heating Actual Clean SSEmod should be 0.00 degC2.
 Heating Actual Noisy SSEmod should be 0.67 degC2.

Table 2. Algorithm performance comparison to COOLING calibration parameters

 COOLING
Parameter M2Calibration M3Algorithm1 M4Algorithm2

Clean Noisy Clean Noisy Clean Noisy
𝑦ு (℃) 100.00 98.81 98.03 98.19 100.00 98.98
𝑦௅ (℃) 0.94 -0.21 1.25 -0.80 1.04 -0.74

𝑡௦ (𝑠𝑒𝑐) 1.50 1.50 1.5352 1.5381 1.50 1.51
𝜏 (𝑠𝑒𝑐) 1.82 1.12 1.78 1.10 1.79 1.11
SSEmod 0.51 1.30 1.02 1.33 0.31 1.03

Note: Cooling Actual Clean SSEmod should be 0.51 degC2.
 Cooling Actual Noisy SSEmod should be 1.30 degC2.

Using your M4 algorithm, analyze the 100 time histories provided by FOS, Inc. to identify the
four relevant first-order system parameters (yL, yH, ts, and τ) from each time history. In Table 3,

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 5 of 7

copy your results from M3 for the M3 algorithm, and record your results for your M4 algorithm.
Take care with units and decimal places when presenting results.

Table 3. Algorithm performance comparison for FOS designs

Model
Number

M3 Algorithm M4 Algorithm
τ Characteristics

Mean
SSEmod

(degF2)

τ Characteristics
Mean

SSEmod

(degF2)
Mean
(sec)

Standard
Deviation

(sec)

Mean
(sec)

Standard
Deviation

(sec)
FOS-1 0.14 0.030 2.39 0.14 0.028 0.34
FOS-2 0.34 0.038 2.46 0.34 0.028 0.34
FOS-3 0.89 0.073 2.96 0.93 0.032 0.35
FOS-4 1.05 0.087 2.83 1.10 0.031 0.35
FOS-5 1.56 0.143 2.70 1.63 0.030 0.39

As necessary, make improvements to your price versus time constant (τ) regression model in
Project_M4Regression_sss_tt.m. Complete the price versus tau regression analysis on the 100
data sets using your M3 algorithm and your M4 algorithm. Generate a regression plot for your
M3 algorithm and your M4 algorithm. Report the results of each model in Table 4.
Learning Objective (LO): 12.00 Perform linear regression
Learning Objective (LO): 13.00 Perform function discovery and data transformations
Learning Objective (LO): 07.00 Create and evaluate x-y plots suitable for technical presentation
(this includes all appropriate sub-LOs)
Regression plot for Milestone 3

Regression plot for Milestone 4

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 6 of 7

Table 4. Algorithm performance comparison for
price versus time constant regression models

Regression Result M3 Algorithm M4 Algorithm
General Equation price = 2.05*tau ^ (-1.19) price = 2.15*tau ^ (-1.19)

SSE (degF2) 2563.474 1368.415
SST (degF2) 7687.293 7333.257

r2 0.797 0.813

Refinement Category 2: Algorithm Efficiency

If you have refined the efficiency of your code, complete Table 5 below to show the effects of
your refinements. Use the MATLAB built-in functions tic and toc to measure how long it takes
your code to execute. Efficiency refinements must be clearly commented in your code with the
text Category 2 AND adequate description. Do not remove code; comment out unnecessary code
and comment on the change. New code must be designated as such.

 FOS Project Spring 2018
 Final Milestone: Algorithm Refinement

Page 7 of 7

Table 5. Efficiency measurement results.
Algorithm Execution Time (sec)
M3 Algorithm 31.24
M4 Algorithm 1.40

Refinement Category 3: Algorithm Insight

If you have refined the robustness and performance of your algorithm in light of changes in a
thresholding or other variable hardcoded in your algorithm, create one or more plots that
illustrate the insights you have gained. The plot(s) should be suitable for technical presentation
and clearly illustrate the effect of changes on the parameter identification and/or regression
results. Write a paragraph that complements the plot(s). This paragraph must clearly describe
changes to the thresholding or other variables hardcoded in your algorithm and the insights you
gained. The variables used in this analysis must be clearly commented in your code with the text
Category 3 AND adequate description.

